\qquad
\qquad Block \qquad

Polynomial Vocabulary

Term: $\int_{\text {terms }}^{4 x y^{2}}+3 x-5$ Groupings of numbers and/or variables that are split apart by either addition or subtraction.		Like Terms $\underbrace{-5 x+4+2 x}_{\text {"Like Terms" }}=16$ Terms whose variables and their exponents are the same.		Coefficient:
		Coefficien $4 x$ Operator A number var		
$2 x$$\begin{array}{\|ll} \hline 2 x+3 y \\ 4 & 4 \\ 1 & 2 \end{array}$	Monomial		Monomials consist of 1 term	
	Binomial		Binomials consist of 2 terms	
$\begin{array}{ccc} 2 x^{2}+3 x+5 \\ 4 & 4 & 4 \\ 1 & 2 & 3 \end{array}$	Trinomial		Trinomials consist of 3 terms.	
$3 x^{3}+2 x^{2}$ $-6 x+2$ \uparrow \uparrow \uparrow 4 1 2 3 4	Polynomial		If there are more than 3 terms, use the term polynomial	

Like terms are defined as having the same \qquad and the same \qquad .

When adding and subtracting polynomials, you add and subtract \qquad .

Adding Polynomials:

1. Remove parentheses and rewrite each term.
2. Combine \qquad terms!
** Note: Final answers should be in form of polynomials!

Example 1: Simplify.
(a) $\left(12 m^{2}+4\right)+\left(8 m^{2}+5\right)$
\qquad $+$ \qquad $=$ \qquad
(b) $\left(6 s^{2}+3 s+7\right)+\left(2 s^{3}-6 s-4\right)$
\qquad $+$ \qquad $+$ \qquad $=$

Subtracting Polynomials:

Subtraction is the same thing as adding the

1. Remove the parentheses from the first expression and rewrite each term:
\qquad
\qquad change the signs.
2. When you remove the parentheses from the second expression, change each term to its \qquad sign.
3. \qquad like terms.

Example 2: Simplify.
(a) $\left(2 x^{3}+4 x^{2}-6\right)-\left(5 x^{3}+2 x^{2}-2\right)$

Rewrite:

Combine Like Terms:
\qquad $+$ \qquad $+$ \qquad $=$
\qquad
\qquad Block \qquad

What if it looks a little different?
REMEMBER, DISTRIBUTE MEANS TO MULTIPLY!!!
What about these: $5\left(2 x^{2}-3 x+10\right)+3\left(3 x^{2}+2 x-10\right)$

1. Distribute the \qquad outside of the \qquad FIRST!
2. Follow Steps Above

Try it......
(c) $5\left(2 x^{2}-3 x+10\right)+3\left(3 x^{2}+2 x-10\right)$

Distribute First:

Combine Like Terms:

What if it looks like this: $\quad \mathbf{5}\left(2 x^{2}-3 x+10\right)-3\left(3 x^{2}+2 x-10\right)$

1. Distribute the \qquad outside of the parenthesis to each \qquad FIRST!

Multiply:
2. Be Mindful of the MINUS! Change the sign of the second set of parenthesis. Rewrite your problem.

Rewrite:
3. Combine \qquad terms.
Try it......

