\qquad
Perhaps, the process of factoring by removing the greatest common factor can be best stated as the reverse distributive property. In the distributive property, one is multiplying a certain factor to all of the terms. In factoring by $G C F$, one is dividing all of the terms by the $G C F$.

Consider this expression which utilizes the distributive property: $5 x^{2}\left(4 x^{4}+3\right)$.

Visually, this is the distributive process: $5 x^{2}\left(4 x^{4}+3\right)$.
To simplify using the distributive property,

$$
5 x^{2} \cdot 4 x^{4}=20 x^{6}
$$ one multiplies $5 x^{2}$ times $4 x^{4}$, and then one multiplies $5 x^{2}$ times 3 .

$$
5 x^{2} \cdot 3=15 x^{2}
$$

After simplifying using the distributive property, you get $20 x^{6}+15 x^{2}$.
This section will now demonstrate how to factor by removing the $G C F$.
Let's now take your answer to the problem above: $20 x^{6}+15 x^{2}$.
Using what was learned in the last lesson, the $G C F$ of $20 x^{6}$ and $15 x^{2}$ is $5 x^{2}$.
Recall - this is because the greatest common factor of 20 and 15 is 5 , and because the $G C F$ of like variable quantities is always the lowest exponent.

Now, divide each term in the original expression by the $G C F\left(5 x^{2}\right)$. Divide $20 x^{6}$ by $5 x^{2}$, and divide $15 x^{2}$ by $5 x^{2}$.

$$
\begin{aligned}
& 20 x^{6} \div 5 x^{2}=4 x^{4} \\
& 15 x^{2} \div 5 x^{2}=3
\end{aligned}
$$

Therefore, after dividing by the $G C F$, the expression is $4 x^{4}+3$.
To complete this reverse distributive process, write the $G C F$ in front of a set of parentheses. Inside of the parentheses, place the expression that is left after dividing by the $G C F$.

$$
=\begin{array}{cc}
5 x^{2} & \left(\begin{array}{cc}
4 x^{4} & + \\
G C F & \text { what's left after dividing }
\end{array}\right)
\end{array}
$$

So, after factoring by removing the $G C F$, the answer is $5 x^{2}\left(4 x^{4}+3\right)$. Note how this is the original question before distributing at the very top of the page.

Factor the greatest common factor: $8 y^{5}-12 y^{3}+4 y$.
The $G C F$ is of the three terms is $\underline{4}$, because the GCF of 8,12 , and 4 is 4 , and the $G C F$ of y^{5}, y^{3}, and y is y. So, the $G C F(4 y)$ will be placed in front of the parentheses, and all of the terms in the expression will be divided by $4 y$.

Therefore, the answer is $4 y\left(2 y^{4}-3 y^{2}+1\right)$.
Generating the last term in this expression is where many students make a mistake. In order to get " +1 ", one has to divide $4 y$ by $4 y$. Some students would think this is zero, and they would not write anything. However, it's important to see that $4 y \div 4 y=1$.

Factor the greatest common factor: $14 z^{8}+24 z^{7}-30 z^{3}$.

First, the $G C F$ of all three terms is $2 z^{3}$. Now, divide each of the terms by $2 z^{3}$.

The answer is $2 z^{3}\left(7 z^{5}+12 z^{4}-15\right)$
Factor the greatest common factor: $16 c^{7}-6 c^{3}$.
The $G C F$ is $2 c^{3}$. Now, you complete the problem below:

For Questions 1-2, factor the greatest common factor.

1. $25 d^{5}+45 d^{4}$
2. $9 k^{4}+12 k^{3}-6 k$
\qquad
Factor the greatest common factor: $28 a^{3} b^{2}-36 a^{2}-17 b^{5}$.
Note that the $G C F$ of the coefficients $(28,-36$, and -17$)$ is 1 . Also, note that the terms do not all share any common variables.

Obviously, it makes little sense to write $1\left(28 a^{3} b^{2}-36 a^{2}-17 b^{5}\right)$.

When one is only factoring out the greatest common factor, and the GCF is 1 , he/she should write that the expression is PRIME .

Homework on Factoring by Greatest Common Factor

Factor the greatest common factor out of the polynomial. If the $G C F$ is 1 , write PRIME.

1. $8 x^{2}+10 x$
2. $12 y-16$
3. $-15 d^{5}+45 d^{3}$
4. $13 a+20 b$
5. $c^{3}+c^{2}-c$
6. $6 n^{2}-30 n+42$
7. $-7 m^{2}-10 m+17$
8. $18 p^{3}-63 p^{2}-9 p$
9. $18 x^{2}-50 y^{2}$
10. $100 z^{9}+50 z^{6}-75 z^{5}$
11. $36 r s^{2}-108 r^{2} s^{3}$
12. $36 k-30$
13. $a^{7} b-a^{10}$
14. $2 c^{5} d^{4}-3 c^{4}+4 c^{3}$
15. $3 g^{8}+3 g^{7}$
16. $18 x^{5}-48 x^{4}+56 x^{3}-86 x$
17. $23 y^{10}-46 y^{7}+68 y^{2}+10 y$

1. $2 x(4 x+5)$	2. $4(3 y-4)$	3. $15 d^{3}\left(-d^{2}+3\right)$ or $-15 d^{3}\left(d^{2}-3\right)$
4. PRIME	5. $c\left(c^{2}+c-1\right)$	6. $6\left(n^{2}-5 n+7\right)$
8. $9 p\left(2 p^{2}-7 p-1\right)$	9. $2\left(9 x^{2}-25 y^{2}\right)$	10. $25 z^{5}\left(4 z^{4}+2 z-3\right)$
11. $36 r s^{2}(1-3 r s)$	12. $6(6 k-5)$	13. $a^{7}\left(b-a^{3}\right)$
14. $c^{3}\left(2 c^{2} d^{4}-3 c+4\right)$	15. $3 g^{7}(g+1)$	16. $2 x\left(9 x^{4}-24 x^{3}+28 x^{2}-43\right)$
17. $y\left(23 y^{9}-46 y^{6}+68 y+10\right)$		

