Algebra 2

Section 3.1
Solving Linear Systems by Graphing
system of equations: A set of two or more equations.

$$
\text { Example: } \begin{aligned}
-3 x+2 y & =8 \\
x+2 y & =-8
\end{aligned}
$$

linear system: consists of linear equations \{form a straight line, when graphed\}
solution of a system: A set of values for the variables that makes all equations, in the system, true. The point at which the lines intersect.

What is the solution of the system?

$$
\begin{gathered}
-3 x+2 y=8 \\
x+2 y=-8
\end{gathered}
$$

Graph each equation by getting into slope-intercept form, $\mathbf{y}=\mathrm{mx}+\mathrm{b}$ m is the slope
\mathbf{b} is the \mathbf{y}-intercept

$$
\begin{aligned}
& x+2 y=-8 \quad\{\text { second equation }\} \\
& -x \quad-x \\
& 2 y=-x-8 \quad \text { \{subtracted } x \text { from each side }\} \\
& \left.y=-\frac{1}{2} x-4 \quad \text { \{divided each side by } 2\right\} \\
& \text { slope }=-\frac{1}{2} \\
& y \text {-intercept }=-4
\end{aligned}
$$

$$
-3 x+2 y=8 \quad\{\text { first equation }\}
$$

$$
+3 x \quad+3 x
$$

$$
2 y=3 x+8 \quad \text { \{added } 3 x \text { to each side }\}
$$

$$
y=\frac{3}{2} x+4 \quad\{\text { divided each side by } 2\}
$$

$$
\text { slope }=\frac{3}{2}
$$

$$
y \text {-intercept }=4
$$

check in each equation

$$
\begin{array}{ll}
-3 x+2 y=8 & x+2 y=-8 \\
-3(-4)+2(-2)=8 & -4+2(-2)=-8 \\
12-4=8 & -4-4=-8 \\
8=8 \\
\hline & -8=-8
\end{array}
$$

$(-4,-2)$ is the solution of the system

Find the point of intersection of the two lines:

$$
\begin{aligned}
& 2 x+4 y=12 \\
& x+y=2
\end{aligned}
$$

$$
\begin{aligned}
& x+y=2 \quad \text { \{second equation }\} \\
& -x \quad-x
\end{aligned}
$$

$$
y=-x+2 \quad\{\text { subtracted } x \text { from each side }\}
$$

Graph each equation by getting into slope-intercept form, $y=m x+b$ m is the slope
slope $=-1$
y-intercept $=2$
\mathbf{b} is the \mathbf{y}-intercept

$$
\begin{aligned}
& \begin{array}{l}
2 x+4 y=12 \\
-2 x \quad-2 x
\end{array} \quad\{\text { first equation }\} \\
& 4 y=-2 x+12 \quad\{\text { subtracted } 2 x \text { from each side }\} \\
& y=-\frac{1}{2} x+3 \quad\{\text { divided each side by } 4\}
\end{aligned}
$$

$$
\text { slope }=-\frac{1}{2}
$$

$$
\text { y-intercept = } 3
$$

check in each equation

$2 x+4 y=12$	$x+y=2$
$2(-2)+4(4)=12$	$-2+4=2$
$-4+16=12$	$2=2$

$12=12$ \qquad point of intersection appears to be ($-2,4$)

$(-2,4)$ is the point of intersection \{solution\} of the two lines \{equations\}

Which ordered pair of numbers is the solution of the system? $\left\{\begin{array}{l}2 x+3 y=12 \\ 2 x-y=4\end{array}\right.$

Which of the following graphs shows the solution of the system?
$\left\{\begin{aligned} x+y & =-4 \\ 2 x-2 y & =-8\end{aligned}\right.$

Get each équation in slope-intercept form, $\bar{y}=m x+b$ m is the slope b is the y-intercept

$$
\text { slope }=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal,changé }}
$$

$$
x+y=-4 \quad\{\text { first equation }\}
$$

$$
y=-x-4 \quad\{s u b t r a-c t e d x \text { from each side }\}
$$

slope $=-1\left\{\right.$ which is $\frac{-1}{1}$ in the form of $\left.\frac{\text { rise }}{\text { run }}\right\}$
y-intercept $=-4 \quad\{$ where the line crosses the y-axis $\}$ slope $=1 \quad\left\{\right.$ which is $\frac{1}{1}$ in the form of $\left.\frac{\text { rise }}{\text { run }}\right\}$
y-intercept $=4 \quad\{$ where the line crosses the y-axis \}

You and your friend are both knitting scarves for charity. You knit 8 rows each minute and already have knitted 10 rows. Your friend knits 5 rows each minute and has already knitted 19 rows. When will you both have knitted the same number of rows?

2.6 minutes

(H) 9.7 minutes

Let x be the number of minutes and y be the number of rows
You knit 8 rows per minute and already knitted 10 rows
$y=8 x+10 \quad\{8$ times the number of minutes (x) plus the number of rows already $(y)\}$

Your friend knits 5 rows per minute and already knitted 19 rows
$y=5 x+19$ \{5 times the number of minutes (x), plus the number of rows already $(y)\}$
A graphing calculator could be used to find the point of intersection.

Any rebroadcast, reproduction, modification or other use of the work, presentations, and materials from this site without the express written consent of Mr. Sims, is prohibited. © Mr. Sims. All rights reserved.

